
August 1989 UILU-ENG-89-2222

ACT-108

COORDINATED SCIENCE LABORATORYr'ollege of Engineering
fL Lpplied Computation Theory

N

EFFICIENT ON-LINE
* SIMULATIONS OF
I TREE MACHINES
* AND MULTIDIMENSIONAL

TURING MACHINES
I BY RANDOM
* ACCESS MACHINES
I

DTIC- - -_CT E
Michael C. Loui OCT 0 5 1,89

I David R. Luginbuhl D L)

I

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

____ _89.10 4 004

UNCLASSIFIED
SECURITY CLAssIFCATION OF THIS PAGE

Fol.n Approved
REPORT DOCUMENTATION PAGE OANo. 0704'88E &. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/OOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-89-2222 (ACT #108)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab 1 If ppilcibje) Air Force Institute of Technology
Universitv of llinois N/I A Office of Naval Research

6C. ADDRESS (City, State, and ZIPCod) 7b. ADDRESS (City, State, and ZIP Code)
1101 W. Springfield Ave. 800 N. Quincy Wright-Patterson AFB
Urbana, IL 61801 Arlington, VA 22217 Ohio 45433

&a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION AFIT (If applicable)

Office of Naval Research ONR N00014-85-K-0570

&. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM 1PROJECT TASK IWORK UNIT800 N. Quincy Wright-Patterson AFB ELEMENT NO. NO. NO ACCESSION NO.Arlington, VA 22217 Ohio 45433

11. TITLE (Include Security Clafication)
Efficient On-Line Simulations of Tree Machines and Multidimensional Turing
Machines by Random Access Machines

12. PERSONAL AUTHOR(S)
Loui, Michael C. and Luginbuhl, David R.

13a. TYPE OF REPORT 13b. TIME COVERED "t 4. ATE' OF REPORT (Year, MontS, ay) IS. PAGE COUNT
Technical FROM _ TO August, 1989 31

16. SUPPLEMENTARY NOTATION

17, COSATI COOES 18. SUBJECT TERMS (Continue on reverse if nece ary and idenrly by block number)
FIELD GROUP SUB-GROUP random access machine, multidimensional Turing machine,

tree machine, on-line simulation, time complexity,
Kolmogorov complexity, lower bounds

19. ABSTRACT (Continue on reverse if necesary and identify by block number)

We establish an optimal on-line relationship between tree machines
and random access machines (RAMs). We present an on-line sim-

ulation of a tree machine of time complexity t by a log-cost RAM
of time complexity O((t log t)/loglog t). Using information-theoretic
techniques, we show that this simulation is optimal.

We adapt the simulation of a tree machine to devise an on-line
simulation of a d-dimensional Turing machine of time complexity t by
a log-cost RAM running in time O(t(log t)1-1/d(loglog t)l/d).

0. 0DiSTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
(3UNCLASSIFIEDAJNLIMITED C3 SAME AS RPT C1 OTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Arej'Code) 22c. OFFICESYMSOL

II
Ar _71 IC SYMBO

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

I

Efficient On-Line Simulations of Tree
Machines and Multidimensional Turing
Machines by Random Access Machines *

Michael C. Louit
Department of Electrical and Computer Engineering and

Beckman Institute
University of Illinois at Urbana-Champaign

Urbana, IL 61801

David R. Luginbuhll
Department of Computer Science and .

Beckman Institute
University of Illinois at Urbana-Champaign

Urbana, IL 61801

August 24, 1989

A-1

*The views, opinions, and conclusions in this paper are those of the authors and should
not be construed as an official position of the Department of Defense, U.S. Air Force, or
other U.S. government agency.

tSupported by the Office of Naval Research under Contract N00014-85-K-0570.
ISupported by the Air Force Institute of Tc-hnolngy, AFIT/CIRD, Wright-Patters,1i

AFB, OH 45433.

Abstract

We establish an optimal on-ine relationship between tree machines
and random access machines (RAMs). We present an on-ine sim-
ulation of a tree machine of time complexity t by a log-cost RAM
of time complexity O((t log t)/loglog t). Using information-theoretic
techniques, we show that this simulation is optimal.

We adapt the simulation of a tree machine to devise an on-line
simulation of a d-dimensional Turing machine of time complexity t by
a log-cost RAM running in time O(t(log t)I-I/d(log log t),/d).

1 Introduction

The random access machine (RAM) and the Turing machine (TM) are the

standard models for sequential computation. Research into the use of time

and space by these and other models gives us insight into their computational

power. This research includes analyzing how two different models use time

and space, and comparing time and space utilization within a single model.

Another avenue of investigation is determining how altering the definitions of

time and space (for example, log-cost 'versus unit-cost) for a model affects its

computational power. Slot and van Emde Boas (1988), for example, showed

how space equivalence of RAMs and Turing machines is affected by varying

the definition of space complexity for RAMs. -

3- Paul and Reischuk (1981) used tree machines to investigate the relation-

ships between time and space for random access machines and multidimen-

3 sional Turing machines. They presented a simulation of a log-cost RAM of

time complexity t by a tree machine of time complexity 0(t). They also

Ushowed that a tree machine of time complexity t can be simulated off-line

by a unit-cost RAM of time complexity O(t/ log log t). Loui (1984b) showed

that a multihead tree machine of time complexity t can be simulated by a

tree machine with only two worktape heads in time O((t log t)/log log t).

- We present an on-line simulation of a tree machine of time complexity t

* by a log-cost RAM of time complexity O((t log t)/ log log t). Using the notion

of incompressibility from Kolmogorov complexity (Li and Vitanyi, 1988), we

3 show that this simulation is optimal. This appears to be the first application

of Kolmogorov complexity to sequential RAMs. It is significant because few

3 2I
I

algorithms have been shown to be optimal.

Using similar techniques, we design an efficient on-line simulation of a

d-dimensional Turing machine of time complexity t by a log-cost RAM run-

ning in time O(t(logt) 1 1/d(loglogt)l/d). For d = 1, the running time is

O(t log log t), which is the same as the result of Katajainen et al. (1988).

This work is a complement to Loui's (1983) simulation of tree machines

by multidimensional Turing machines and Reischuk's (1982) simulation of

multidimensional Turing machines by tree machines.

All logarithms in this paper are taken to base 2.

2 Machine Definitions

All machines that we consider have a two-way read-only input tape and a

one-way write-only output tape. The principal differences in the machines

are in their storage structures.

A tree machine, a generalization of a Turing machine, has a storage struc-

ture that consists of a finite collection of complete infinite rooted binary trees,

called tree worktapes. Each cell of a worktape can store a 0 or 1. Each work-

tape has one head. A worktape head can shift to a cell's parent or to its left

or right child. Initially, every worktape head is on the root of its worktape,

and all cells contain 0.

Let W be a tree worktape. We fix a natural bijection between the positive

integers and cells of VV. We refer to the integer corresponding to a particular

cell as that cell's location. Write cell(b) for the cell at location b. Define cell(l)

as the root of W. Then cell(2b) is the left child of cell(b) and cell(2b + 1) is

33 U
I

the right child of cell(b).

Each step of a tree machine consists of reading the contents of the work-

tape cells and input cell currently scanned, writing back on the same work-

tape cells and (possibly) to the currently accessed output cell, and (possibly)

shifting each worktape head and the input head. If the tree machine writes

on the output tape, it also shifts the output head.

The time complexity t(n) of a tree machine is defined in the natural way.

A multihead d-dimensional Turing machine consists of a finite control

and a finite number of d-dimensional worktapes, each with one worktape

head. A d-dimensional worktape comprises an infinite number of cells, each

of which is assigned a d-tuple of integers called the coordinates of the cell.

The coordinates of adjacent cells differ in just one component of the d-tuple

by ±1. At each step of the computation, the machine reads the symbols in

the currently accessed input and worktape cells, (possibly) writes symbols on

the currently accessed output and worktape cells, (possibly) shifts the input

head, and shifts each worktape head in one of 2d + 1 directions - either to

one of 2d adjacent cells or to the same cell.

The random access machine (RAM) (Aho et al., 1974; Cook and Reckhow,

1973; Katajainen et al., 1988) consists of the following: a finite sequence of

labeled instructions; a memory consisting of an infinite sequence of registers.

indexed by nonnegative integer addresses (register r(j) has address j); and

a special register AC, called the accumulator, used for operating on data.

Each register, including AC, holds a nonnegative integer; initially all registers

contain 0. Each cell on the input tape contains a 0 or 1. The following RAM

instructions are allowed ((x) denotes the contents of register r(x); (AC)

4

U
I
I

denotes the contents of AC):

input. Read the current input symbol into AC and move the input head3

one cell to the right.

output. Write (AC) to the output tape and move output head one cell I
to the right.

jump 9. Unconditional transfer of control to instruction labeled 0.

jgtz 0. Transfer control to instruction labeled 0 if (AC) >0. i
load =C. Load integer C into AC. I
loadj. Load (j) into AC. 3
load *j. (Load indirect) Load ((j)) into AC.

store J. Store (AC) into r(j).

store *j. (Store indirect) Store (AC) into register r((j)). 1
add j. Add (j) to (AC) and place result in AC. I
sub j. If (j) > (AC), then load 0 into AC; otherwise, subtract (j) from I

(AC) and place result in AC. I
Define the length of a nonnegative integer i as the minimum positive

integer w such that i < 2W - 1 (approximately the logarithm of i). The I
length of a register is the length of the integer contained in the register (note

5

I
I

that the length of a register is a time-dep,

We consider two time complexity rnca-

of each RAM instruction. For the unit-co.,.

one unit of time. For the log-cost RAM, w,

to the logarithmic cost criterion (Katajaji,

instruction is the sum of the lengths of t I

contents) involved in its execution. The

the maximum total time used in comput,.

possible, of course, to define time cornpl,

charge some other function f(j) for acc,

1987).

In our simulations, we group the regi>

ories, each memory containing an infinil(

not increase the cost in time by more tha,

simply interleave these memories into one

We use a technique of Katajainen 0

registers in order to find the bit represc,

This divide-and-conquer strategy involvve,

Lemma 2.1 (Katajainen et al., 1988) If/

it is possible to compute the u-bit represm,.

numeric value of a u-bit string, both in 0

Lemma 2.2 (Katajainen et al., 1988) 77/

can be built in O(u2u) time on a log-cost /

6

A machine M of time complexity t is simulated by a machine M' on-lineC

in time f (t) if for every time step s, where M! reads/writes a symbol, there

is a corresponding time step s' where MP reads/writes the same symbol, and3

s/ < f (si).

3 Simulation of a Tree Machine

3.1 Upper Bound

It is straightforward to simulate a tree machine with a log-cost RANI in time

O(t log t). In fact, such a simulation is used in Theorem 3.2 to show that a3

tree machine can be simulated by a unit-cost RAMI in real time. However,

we can do better than the straightforward simulation for log-cost RANIs.3

For simplicity, we consider tree machines with only one worktape, but our

results generalize to -multiple worktapes. Let T be a tree machine of time3

complexity t with one worktape IV. We show that there is a RAM R that

simulates T on-line in time 0((t log t)/ log log t).

We first provide a brief description of the simulation. We choose parame-

ters h and u such that u = 221h+2 1. We specify the values of h and u later.3

As noted earlier, R has several memories. R maintains in the niain mcmiory

the entire contents of W. The main memory represents 1IV as overlappingI

subtrees, called blocks. R represents the contents of each block W,7 in one

register r, of the main memory. When the worktape head is in a particular

block VV,, R represents IV. in the cache memnory. Step-by-step simulation3

is carried out in the cache, which represents the block IVs in breadth-first

7 I

I
I

order, one cell of IWV per register of the cache.

Because blocks overlap, when the worktape head exits IV,, it is positioned

in the middle of some other block W.. At this time R packs the contents of

the cache back into r, in the main memory and unpacks the contents of r.

into the cache.

The details of the simulation follow.

Let WIx, s] be the complete subtree of It of height s rooted at cell(x).

A block is any subtree W. = W[x,2h + 1] such that the depth of cell(x) is a

multiple of h + 1. Since a block has height 2h + 1, it contains 2 h+2 - I u

cells. Let the relative location of a cell within a block be defined in a manner

similar to the location of a cell, where the relative location of the root of the

block is 1, the relative locations of its children are 2 and 3, and so on.

Call a block 1VVp the parent block of I, if cell(p) is the ancestor of cell(x)

at distance h + 1 from cell(x). If TV, is the parent block of IV,, then IF is

a child block of W. Each block has 2 h+i child blocks. The topmost block of

V, which contains the root of W, is called the root block.

Define the top half of a block IV, as 'V[x, h], and define the bottom half

of IV, as the remaining cells of the block. Note that the top half of the block

W, is part of the bottom half of WVp,, its parent block, so that the blocks

overlap. Call the portion of IV shared by TV' (i.e., the subtree 1'[x. hJ) the

common subtree of V, and IVP.

R precomputes in separate memories two tables, half and translate. We

explain later how R uses these tables. Here we describe their contents and

how they are computed. Let half(z) (respectively, translate(z)) be the regis-

ter in half (respectively, translate) at address z.

IS

Half (z) contains [z/2J. For z = 1,. .. , u/2, R stores z in half(2z) and

half (2z + 1).

For z = 22h+1, , u, translate(z) contains (z mod 2h+1) + 2h+1 . R never

refers to any register in translate with address less than 22h+1 Translate is

computed as follows:

I := - h+1

for z - 2h+l to u do

if I = 2Ih + 2 then Z' := 2 h + i

We now show how R simulates the tree machine using the cache. Assune

the head of T is currently scanning a cell in block IWV. Let cachekz) be the

register in the cache with address z and let cell(x, z) be the cell in I,V, with

relative location z. For each z = 1,... , u, register cache(z) contains the bit in

cell(x, z); for example, cache(I) contains the contents of cell(x, 1) = cell(x).

the root of ,V. Thus R uses u registers of the cache, each register containing

one bit. 3
While the head of T remains in W,, R keeps track of the head's location

with the cache address register in the working memory, a memory maintained

by R for storing information necessary for miscellaneous tasks. If the cache

address register contains z, then cell(x, z) is curently being accessed in T.

To simulate a tree machine opeation at cell(r, z), R loads the contents

(one bit) of cache(z) into AC. Once the contents are in AC, R simulates one 3
step of T by storing either 0 or 1 in cache(z).

9I
!

I

If the head of T moves to a child of cell(x, z), then the new address for

the cache address register, as well as the relative location of the new block

cell being read, is either 2z or 2z + 1. With one or two additions, R computes

this new address and places it in the cache address register. When the head

of T moves to the parent of cell(x, z), the address of the corresponding cache

register is [z/2]. Because R has no division operation, it accesses the proper

register of table half to retrieve the new address in cache.

To describe what happens when the worktape head moves out of the

I current block, we first show how the blocks are stored in main memory. Main

memory is divided into pages consisting of 2 h+1 + 3 registers each. A page

I corresponds to a visited block of W. Let page(x) be the page representing

VV,. Define the address of a page to be the address of the first register in

the page. The first register in page(x) is the contents register. For the page

. representing the root block, the contents register contains the entire contents

of that block. For every other block W, the contents register contains the

3 contents of the bottom half of W. The contents of cells in a block are kept

in breadth-first order; i.e., reading the binary string in the contents register

3 from left to right is equivalent to reading the bottom half of the block it

represents in breadth-first order. Initially, all cells of a block contain 0, so

3 all contents registers initially contain 0.

Following the contents register is the rank register, containing a number

3 e between 1 and 2 h+' indicating that W is the eth child of its parent block.

The next register is the parent register, containing the address of the page

I representing Lhe parent block of W,. The next 2h+' registers are the child

registers ,. The mth child register of page(x) contains the address of the

10I
I

I
I

page representing the rn child block of W V, or 0 if that child block has not

been visited (see Figure 1).

The first page in main memory corresponds to the root block. Blocks

are then stored in the order in which they are visited. The page address

register, a register in working memory, contains the address of the page in

main memory corresponding to the currently accessed block.

Let WVV be the currently accessed block and let Wp be the parent block of

W,. When the tree worktape head moves out of VV, so that it is positioned in

the middle of a child block W,, R makes the proper changes to main memory

and load the cache from the contents register of page(c).

In main memory, R updates the contents registers of page(x) and page(p). I
To update page(x), R packs the contents of the registers of the cache which

correspond to the bottom half of W, into a single register in working memory

(call it the transfer register, denoted by tr). Packing information in the cache

consists of creating from the registers in the cache one binary string that

represents the bottom half of a block (in the same format as a main memory

register). The pack operation is that used by Katajainen et al. (1988). R

then copies tr into the contents register of page(x) via AC (see Figure 2).

Updating page(p) consists of changing the bits of its contents register cor-

responding to the common subtree of W1 and Wp. R first saves the contents 3
of the cache that encode the common subtree of IVx and It", in a portion

of working memory, since this information is needed in the cache as the top

half of W,. R also saves the contents of the cache that encode the common

subtree of W and tip. R then loads the contents register of page(p) into I
tr and unpacks the contents into the cache. The bits in working memory

11

I
I

TREE WORKTAPE

W.7 depth (j)(h + 1)

head Top half of W.,

Bottom half of It',

MAIN MEMORY

a "bottom half of V.," contents

page (x) 3rn
-~ parent

child 1

bottom half of W," contents

1 rank
page (c)

a parent

Figure 1: Worktape W4 (head moves from W., to It',

12

cache working main
. 011 tr

SJ.0 page(p)

0I
1I

Figure 2: Updating page(p) in main memory

corresponding to the common subtree of W, and Wp are then written into

their proper locations in the portion of the cache representing the bottom U

half of Wp. R then packs the contents of the cache into tr and copies tr into

the contents register of page(p). I
R then determines whether W, has been visited before by checking the

contents of the child register of page(x) corresponding to V. If the child

register contains a valid (i.e., nonzero) address, then R uses that address to

access page(c). R then loads the contents register of page(c) into the cache.

This action is similar to the manipulation of page(p) discussed above. R 3
loads the contents of the common subtree of Wx and W saved in working

memory into the registers of the cache representing the top half of the block.

If the child register of page(x) contains 0, then R allocates a new page to

maintain the information on WV. U

R modifies the page address register to reflect the fact that the worktape

13

I

I|

head is now scanning block W,. The address currently in this register is that

of page(x). R writes the address of page(c) in main memory to the page

address register. R determines from the cache address register the quantity

t such that W, is the &" child of W,. Then by accessing the jth child register

of page(x) in the main memory, R can determine the address of page(c).

To modify the cache address register to reflect the relative location of

the head within block W., R first translates the relative location of the leaf

cell(x, z) in W, to its relative location in W. Since leaf cell(x, z) in W is

the same as cell((c, z mod 2 h+i) + 2 h+) in W,, R uses the table translate

described above. Using one or two additions, R then calculates the relative

location in Wc of this cell's left or right child, depending on which branch

the worktape head used to exit Wr. R then writes this new relative location

into the cache address register.

A similar sequence of operations occurs if the worktape head moves out of

a block (and further) into its parent block instead of into a child block. Then

R uses the parent register to determine the address of the page representing

the parent block, and R uses the rank register to determine the relative

location of the worktape head within the parent block.

If R does not know the input size n ahead of time, then we let R adopt an

incremental technique of Galil (1976). R begins by assuming that n = 2. If

the input head reads a third symbol, then R begins again with n = 4, but it

does not output symbols already printed. In general, R assumes n 2 2k until

it reads the (2
' + 1)th symbol, at which time R starts over with n = 2k + 1.

The values of u and h depend on the value of n; therefore u and h are

recomputed each time the value of n is doubled.

14

I
I

Let the actual simulation (without the incremental method) run in time

t'(n), where t'(n) > n. It can be shown by induction that the simulation

with the incremental method runs in time at most k't'(n), for some constant

k' > 0.

By evaluating the cost of the simulation on a log-cost RAMI, we derive

the following result.

Theorem 3.1 A tree machine running in time t(n) can be simulated on-line I
by a log-cost RAM running in time O((t(n) logt(n))/loglogt(n)).

Proof. Because the blocks have height 2h + 1 and overlap by height h + 1,

each time the worktape head moves out of a block, it is exactly in the middle

of another block; i.e., it will take at least h' = h + 1 steps before it exits

this new block. Since the tree machine computation has at most t steps, the U

work of updating main memory from cache (packing), loading a new block

to cache (unpacking), and directly simulating h' steps is performed at most

t/h' times.

Updating main memory and loading a new block in cache involve the pack

and unpack operations and a constant number of accesses to main memory.

Registers in main memory have addresses no larger than (t/h')(2h+l + 3).

Thus accesses to main memory take time O(log t + h).

By Lemma 2.1, the time for the pack and unpack operations is O(u log u).

By Lemma 2.2, the time to create the tables necessary for these operations

is O(u2'). The time to compute tables half and translate is O(u).

Simulating one step of the tree machine consists of a constant number of

accesses to cache, taking time O(log u). Thus simulating h' steps takes time

15

I
I]

O(h'log u).

The total time required for R, then, is

I (t/h')(O(log t + h) + O(u log u) + O(h'log u)) + O(u2u).

Since h = O(Iog u), the total time is

O(((tlogt)/logu) + tu + tlogu + u2u).

Choose h so that u = (log t)/ log log t. Then the total time for the simu-

3 lation is O((t log t)/ log log t). El

For unit-cost RAMs, we have a much stronger result:

Theorem 3.2 A tree machine can be simulated by a unit-cost RAM in real-

time.

U Proof sketch. We design a unit-cost RAM R simulate tree machine T

with worktape W. R has a contents memory, a parent memory, and several

working registers. Let contents(x) (respectively, parent(x)) be the register

with address x in the contents (respectively, parent) memory. Contents(x)

at address x contains the contents of cell(x) at location x in the worktape of

T. If cell(x) is visited by T, then parent(x) contains the worktape location

of the parent of cell(x). The working registers are used as temporary storage

3 and to keep track of which cell is currently accesscd by T.

R simulates one step of T with a constant number of accesses to the two

I memories and the working registers. For example, if the head moves from

cell(x) to a child of cell(x), then R computes location 2x of the left child or

16

I

I

2x + 1 of the right child with one or two additions and stores x in parent(2x)

or parent(2x + 1). Thus to simulate t steps of T takes O(t) time on T. 0]

An immediate consequence of Loui's upper bound on the simulation of a

tree machine by a multidimensional TM is the following:

Theorem 3.3 (Loui, 1983) A log-cost RAM running in time t(n) can be

simulated on-line by a multihead d-dimensional Turing machine running in

time 0(t(n)l+l/d/ log t(n)). I
Using our simulation of a tree machine by a log-cost RAM, we obtain a

nonlinear lower bound for simulating a RAM by a multidimensional Turing

machine:

Corollary 3.4 There is a log-cost RAM R running in time t(n) such that

for any multihead d-dimensional Turing machine S, S simulates R on-line

in time fQ((t(n)I+l/d(log log t(n))I+I/d)/(log t(n)) 2 +1/d).

Proof. Let T be the tree machine described in the lower bound proof

of Loui(1983). Let R be the RAM that uses the method in the proof

of Theorem 3.1 to simulate tree machine T. T runs in real time, so by

Theorem 3.1, R runs in time t(n) = 0((nlogn)/loglogn). Now assume

there is a d-dimensional Turing machine that simulates R on-line in time

o((tl+l/d(log log t)l+l/)/(log t)2+1/d). We thus have an on-line simulation of

tree machine T running in time n by a d-dimensional Turing machine running

in time o(nl+l1d/ log n). But we know from Loui (1983) that the lower bound

on such a simulation is Q(nl+l/d/ log n); hence we have a contradiction. Dl

17 I
I
I

3.2 Lower Bound

We now show that the time bound of Theorem 3.1 is optimal within a con-

stant factor. We begin with an overview of Kolmogorov complexity, which

we use to prove the lower bound.

For strings o,r in {0, 1} , let K(a) be the Kolmogorov complexity of a

with respect to a universal Turing machine U. Define K(a) to be the length of

0 where 0 is the shortest binary string such that U(O) equals a. Informally,

K(a) is the length of the shortest binary description of o,.

We say a string a is incompressible if K(o-) _! lal. Note that for all n

there are 2 n binary strings of length n, but there are only 2 n - 1 strings of

length less than n. Thus for all n, there is at least one incompressible string

of length n.

A useful concept in Kolmogorov complexity is the self-delimiting string.

For natural number n, let bin(n) be the binary representation of n without

leading O's. For binary string w, let W be the string resulting from placing a

0 between each pair of adjacent bits in w and adding a 1 to the end. Thus

110 = 101001. We call the string bin(Iwf)w the self-delimiting version of

w. The self-delimiting version of w has length fw I + 2[log(lwl + 1)]. When

we concatenate several binary string segments of differing lengths, we can

use self-delimiting versions of the strings so that we can determine where

one string ends and the next string begins with little additional cost in the

length of the concatenated string. Note that in such a concatenation it is

not necessary to use a self-delimiting version of the last string segment.

Kolmogorov complexity has recently gained popularity as a method for

18

proving lower bounds. Li and Vitanyi (1988) provide a thorough summary

of lower bound (and other complexity-related) results obtained using Kol-

mogorov complexity.

Theorem 3.5 There is a tree machine T running in time n such that for any

log-cost RAM R, R requires time t(n) = £((n log n)/ log log n) to simulate T

on-line.

Proof. For simplicity, we omit floors and ceilings in this proof.

Tree machine T has one tree worktape and operates in real time. T's

input alphabet is a set of commands of the form (e, b), where e E {0, 1, ?}

and V indicates whether the worktape head moves to a child or parent of the

current cell or remains at the current cell. Suppose T is in a configuration

in which the cell x at which the worktape head is located contains e'. On

input (e, 4), machine T writes e' on its output tape, and the worktape head

writes e on cell x if e E {0, 1}, but it writes e' (the current contents of x) on

x if e =?. At the end of the step the worktape head moves according to .

For every n that is a sufficiently large power of 2, we construct a series of n

tree commands for which R requires time Q((n log n)/ log log n). As in (Loui, 3
1983), the string of tree commands is divided into a filling part of length n/2

and a query part of length n/2.

Let W be the worktape of T, and let x0 be the root of W. Let d

log(n/8). Denote the complete subtree of W of height d whose root is x0 by I

Wd. Let N = n/8. We consider the complexity of the simulation in terms of

N.

19

We fill Wd with an incompressible string T of length 2N - 1 such that r

can be retrieved by a depth-first traversal of Wd. This is the filling part, for

which T takes time 4N (= n/2)).

The query part consists of a series of questions. A question is a string

of 2 log N tree commands that causes the worktape head to move from the

root xO of the tree worktape to a cell at depth d and back to x0 without

changing the contents of the worktape. As the head visits each cell during

a question, T outputs the contents of that cell. T processes N/(4 log N)

questions Q1, Q 2 ,.... during the query part. We show that after each question

Qj, there is a question Qj+i such that R takes time Q((log 2 N) Ilog log N)

to process Qj+i, and Theorem 3.5 follows.

Assume that R has just processed question Qj. Let P(N) be the max-

imum time necessary to process any possible next question. We show that

some next question takes time f((log2 N)/ log P). Consequently, by defini-

tion, P = fl((Iog2 N)/log P); thus P Q((log 2 N)/log log N).

We first determine the total time I required for R to process all possible

next questions.

Divide worktape W into S = (log N)/(2 log P) sections, each of height

2 log P. For s = 0, 1,... , S - 1, there are p 23+2 exit points (bottom cells) in

section s. We refer to any initial segment of a question as a partial question

and the portion of the question that is processed while the worktape head

is in one section as a subquestion (see Figure 3). To compute i, we compute

for s = 0,1,. . . , S - 1 the total time i, required for R to process all possible

subquestions in section s. Since the depth of Wd is log N, there are N possible

next questions. Each of the p2,+ 2 bottom cells of section s is visited during

20

Xopartial question

through section s - I

section s A -rk A2 log P

Xk subquestion

Figure 3: Processing section s of worktape W

NIP2 +2 of these questions.

Let o be the string defined by the contents of the bottom cells of section

s, from left to right; clearly, loWl = P2s+2.

Lemma 3.6 The string o is incompressible up to a term of O(s log P); i.e.,

K (o.) > o, I- O(s log P).

Proof. The incompressible string r, which gives the contents of W, can

be specified by a string composed of the following segments:

1. a self-delimiting string encoding this discussion (0(1) bits)

21

2. a self-delimiting version of a binary string of length A (a,,) that specifies

a, (K(o,) + O(s log P) bits)

3. self-delimiting versions of the values of s and P (O(logs) + O(log P)

bits)

4. a string specifying the bits in r but not in a, (2N - I - p25+ 2 bits).

Thus K(T) _< K(o,) + (2N - 1 - p 2.+ 2) + O(s log P). But Kx(r) > 2N - 1"

therefore, K(a,) >_ P23+2 - O(s log P). El Lemma 3.6

e
Lemma 3.7 Ife > 1 then -logi > (1/2)eloge.

i=1

Proof For all i such that I < I < e, evidently (i - 1)(f-i) _ 0; hence

i(e - i + 1) > f. Consequently

I t

"logz = (1/2) -(log i + log(e- i +1))

= 1/2) -[log(i(e- i+ 1))

> (1/2)1 loge
1=1

(1/2)eloge.
El Lemma 3.7

Lemma 3.8 For s = 1,2...., S - 1, the maximum number of regist4rs (ic-

cessed during the processing of all partial questions through section - 1 is

4P 2 $+i/ log P.

22

Proof. Let C = 4P/ log P. 3y Lemma 3.7, for P sufficiently large,CI
= log i _> P. The processing of each partial question through section s - I

could involve no more than C registers; otherwise, because of the total cost

of addresses of registers, R would exceed time P for some next question.

There are P2" different partial questions possible through section s - 1, so 1
there are no more than 4 p2s+1/ log P registers accessed for all possible partial

questions. C1 Lemma 3.8 3
Let us consider a particular section s. Let r1 , r 2 , ... , rm be the registers,

in order of increasing address, used to process tree commands in section s.

The address of ri is at least i. For 1 < z < m, let Xi be the set of bottom cells I
x of section s such that ri is accessed while the worktape head is visiting some

cell y in section s, and either y is an ancestor of x or y = x (see Figure 3).

We say that ri operates on the bottom cells in Xi.

To compute a lower bound on i., we assess the contribution to i, of

accessing register ri. For 1 < i <_ m, the total access time for register ri

in section s is at least the product of log/ (since the address of r, is at

least i), NXj (the number of bottom cells that r, operates on), and N/P 2 +2

(the number of questions during which one of these bottom cells is visited).

Totalling the time incurred by access to each register yields: 3
M

Es> -(logi~jX, (N/P2+)()

Using Lemma 3.10 below, we can determine a lower bound for is, but N e

first introduce the following technical lemma.

2:3

I

Lemma 3.9 (Loui, 1984a [Section 4]) Let J and M be integers such that

M > J. A sorted J-member subset of {O ,...,M I} can be represented with no

more than 2Jlog(AI/J) + 4J + 2 bits.

I Let h = (1/7)P 2 . '.

Lemma 3.10 E IXji > (1/23)P 2-+ 2.
i=h

3 Proof Assume that the conclusion is false. Then rl,..., rh-1 operate on

at least (22/23)P 2.+2 bottom cells in section s. We can specify the string

a, as follows: we obtain the bits of Xh,.. ,Xm explicitly. We obtain the

other bits of o by simulating R on each partial question to a bottom cell of

section s not in U Xk. On each such partial question, R uses only registers
k=h

rl,. .. ,rh_ and registers accessed in sections 1,... , s - 1. Thus a can be

3 specified with a string composed of the following segments:

3 1. a self-delimiting string encoding the program of R and this discussion

(0(1) bits)

U 2. self-delimiting versions of the addresses and initial contents of registers

accessed in sections 1,... ,s-1 (at most 8P 2s+ 2/log P+O(slog P) bits

- by Lemma 3.8, at most 4P 2 s+'/ log P registers are required, and for

3 each register, the contents and the address could each require P bits.)

3. self-delimiting versions of the addresses and initial contents of rl,. ., rh-I

I

((/)I + O~lg~is

4. a string specifying positions of cells in Xk for k > h (we use Lemma 3.9

with J = (1/23)P 2- + 2 and M = p2-S+ 2 ; this requires at most (14/23)P 2S+2

bits. The encoding used to achieve Lemma 3.9 is such that the begin-

ning and end of this string can easily be determined.)

5. a string specifying the contents of cells in Xk for k > h (at most

(1/23)P 2 +2 bits).

This means that the number of bits needed to specify o, is at most

(151/161)P 2s+2 + O(p 2s+2/ log p) < p23+2_ O(s log P) for sufficiently large

P. Thus we have a contradiction of Lemma 3.6. 0 Lemma 3.10

Thus we have:

is > ((logi)1XI(N/P 2s+ 2) (Inequality 1)

Tr -((logz)jXj(N/P 2s+2))

iih

(N/P 2s+2)(logh) Z I 2

> (N/P2s+2)(log h)(1/23)P2 +2 (Lemma 3.10)

> (1/23)N((2s + 1) log P - log 7) (definition of h)

(1/23)Ns log P.

Now sum is over all s to compute a lower bound for i, the total time

required for R to process all possible next questions:

S-1

s3=O
S-1

> E((1/23)Nslog P)
=O

25

I

> (1/23)N(log P)((log2 N)/(4 log 2 P) - O((log N)/ log P))

> (l/92)((Nlog2 N)/logP -O(logN)).

Since there are N questions, we divide i by N to derive the average time

needed by R to process the next question, Q((log 2 N)/ log P). Some next

question must require time greater than or equal to this average time. Since

P is the maximum time for some next question, P > Q((log 2 N)/ log P);

hence, P = Q((log2 N)/log log N).

Thus for each question Qj, we can choose a next question Qj+i that

takes time Q((log2 N)/ log log N). Since the query part has N/(2 log N)

questions, our choice of questions means that the query part takes time

t = (N/(2logN))Q2((log2 N)/loglogN)) = £((NlogN)/loglogN). The

entire simulation takes at least time t Since N = n/8, the lower bound

holds for n as well. - Theorem 3.5

Because the lower bound proof considers only the time involved in access-

ing registers, the lower bound holds for RAMs with more powerful instruc-

tions, such as boolean operations or multiplication.

4 Simulation of a Multidimensional Turing

Machine

By composing our simulation in subsection 3.1 of a tree machine by a log-

cost RAM with Reischuk's (1982) simulation of a d-dimensional Turing ma-

chine by a tree machine, we obtain an on-line simulation of a d-dimensional

26

Turing machine of time complexity t by a log-cost RAM running in time

0((5d °ogttlogt)/Ioglogt). But we can improve this upper bound with a

direct simulation.

Theorem 4.1 A d-dimensional Turing machine running in time t(n) can be

simulated on-line by a log-cost RAM running in time

O(t(n)(log t(n))I-I/d (log log t(n))id).

Proof sketch. We design a log-cost RAM R that simulates d-dimensional

Turing machine M. For simplicity, assume Al has one worktape; our results

generalize to d-dimensional Turing machines with more than one worktape.

Let s = ((log t)/ log log t)1/d. Partition the worktape of M into d-dimensional

cubes (call them boxes) with side length s. Let corner(i) be the cell in box i

with the coordinates whose components are the smallest.

For box i, if corner(i) = (ii,i 2, . . . , 'd), let index(i) = idtd + id-ltd - 2 ±

+ ii. R stores the contents of box i in the register in main memory with

address index(i). Step-by-step simulation is carried out in the cache. R con-

ducts the simulation in t/s phases, each of s steps of M. For each phase: R

unpacks the contents of 3d boxes that are within distance s of the worktape

head (the head remains within these boxes during the phase); R simulates

M for s steps; and R packs the contents of the cache back to main mem-

ory. Using precomputed "alues of t, t,... , td- I, R quickly computes index(i')

from index(i) when box i' is adjacent to box i. For each phase, R takes time

O(log t) to access main memory, O(log t) to compute the address of registers

in main memory representing the new blocks needed in cache, O(s log s) to

simulate s steps in the cache, and O(sd log s) to pack and unpack the appro-

27

priate registers (Lemma 2.1). Thus the total time for the simulation is:

(t/s)(O(log t) + O(s log s) + Q(sd log s))

- O(((,c1gt)/) + ts-1 logs)

= O(t(log t)1-l/d(loglog t)l/d).C3

Once again, the result for unit-cost RAMs is much stronger:

Theorem 4.2 A multidimensional Turing machine can be simulated by a

unit-cost RAM in real-time.

Proof. Sch6nhage (1980) showed that a unit-cost successor RAM can

simulate a multidimensional Turing machine in real-time. It follows that a

unit-cost RAM with addition and subtraction can simulate a multidimen-

sional Turing machine in real-time as well. 0

5 Conclusions

Because the log-cost RAM is considered a "standard" among models of com-

putation, it is important to determine its relationships to other models. Here

we have shown an optimal on-line relationship between log-cost RAMs and

tree machines. We have constructed an analogous efficient simulation of mul-

tidimensional Turing machines by log-cost RAMs. We hope that this work

will lead to further study of relationships between other models of computa-

tion.

Some further areas of research include:

28

1. finding an off-line simulation that is faster than our on-line simulation

of a tree machine by a log-cost RAM.

2. finding an optimal simulation of a pointer machine (Sch6nhage, 1980)

by a log-cost RAM.

3. finding an optimal simulation of a unit-cost RAM by a log-cost RAM.

References

[Aggarwal et al., 1987] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra,

and Marc Snir. A model for hierarchical memory. In Proc. 19th Ann.

ACM Symp. on Theory of Computing, pages 305-314, 1987.

[Aho et al., 1974] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.

The Design and Analysis of Computer Algorithms. Addison-Wesley

Publishing Company, 1974.

[Cook and Reckhow, 1973] Stephen A. Cook and Robert A. Reckhow. Time

bounded random access machines. J. Comput. System Sci., 7:351-375,

1973.

[Galil, 1976] Zvi Galil. Two fast simulations which imply some fast string

matching and palindrome-recognition algorithms. Information Process- I
ing Letters, 4(4):85-87, 1976. 3

[Katajainen et al., 1988] Jyrki Katajainen, Jan Van Leeuwen, and Martti

Penttonen. Fast simulation of Turing machines by random access ma- -
chines. SIAM J. Comput., 17:77-88, February 1988.

29

I
I

[Li and Vitanyi, 1988] Ming Li and Paul M. B. Vitanyi. Two decades of

applied Kolmogorov complexity. 1988. To appear in Handbook of The-

oretical Computer Science (J. van Leeuwen, Managing Editor), North-

Holland. Preliminary version in Proc. 3rd IEEE Structure in Complexity

3 Theory Conf., pages 80-101, 1988.

[Loui, 1983] Michael C. Loui. Optimal dynamic embedding of trees into

arrays. SIAM J. Comput., 12:463-472, August 1983.

3 [Loui, 1984a] Michael C. Loui. The complexity of sorting on distributed

systems. Information and Control, 60:70-85, 1984.

U [Loui, 1984b] Michael C. Loui. Minimizing access pointers into trees and

arrays. J. Comput. System Sci., 28(3):359-378, 1984.

[Paul and Reischuk, 1981] Wolfgang Paul and Riidiger Reischuk. On time

I versus space 1I. J. Comput. System Sci., 22:312-327, 1981.

3 [Reischuk, 1982] K. Riidiger Reischuk. A fast implementation of a multidi-

mensional storage into a tree storage. Theoret. Comput. Sci., 19:253-

3 266, 1982.

3 [Sch6nhage, 1980] Arnold Schdnhage. Storage modification machines. SIAM

J. Comput., 9(3):490-508, August 1980.

3 [Slot and van Emde Boas, 1988] Cees Slot and Peter van Erode Boas. The

problem of space invariance for sequential machines. Inform. and Coln-

I put., 77:93-122, 1988.

U 30
I

